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1. Introduction

The design of a VLSI device involves the manipulation of a large Volume of diverse intcrrclated

data. For a given design task, such as simulation or layout, some data may be generated through

either computation or through recording of interactively made human designer decisions. In current

design methodologies, these design tasks operate on different representational levels of the same

device, ranging from overall functional or logical descriptions 11il1180i down to the physics of

individual s'-.itching cells. A single task may carry out verification within one level, may generate

lower level units by expansion of more abstract definitions, or otherwise necessitate movement

between different representational levels. In addition, if complex designs are to be produced in a

tolerable time frame, then several design specialists must be allowed to work concurrently on

distinct sections or at distinct levels. All this causes the management of the design data to become

increasingly difficult since not only will data requirements overlap, but one design task will often be

dependent on the data being manipulated in another area. This data communication effort probably

contributes significantly to the increase in effort from 4 to 30 man-years for microprocessor designs,

and makes single-designer oriented methodologies infeasible [Sch791. The exponential growth of

design cost while production costs diminish - as stated by -aggin and Moore in IRoh)801 - is

changing the outlook of the microprocessor industry, pointing to the need for more effective

handling of design data.

)atabase technology has dealt with both the management of large volumes of data and the

problems caused by concurrency of data access. Many existing database systems support inter-area

communication functions; instances are found of systems dealing with inventories, where production
and sales issues interface, or patient management, where individual care and global health care

concerns come together. Databases are used as well to resolve the multidisciplinary design issues in

aircraft design [Ft,180 and to manage die problems of engineering changes in computing systems

[Sie8O]. Given this background, we foresee that databases may provide tools to serve the VI.SI

designers; however, the tool is complex and will not be effective unless well understood and

adapted to the demands of this application.

We have identified several issues that have to be addressed if databases are to become el'fective

tools in VLSI design. (The interested reader may wish to compare these to 1I.ey79] which has a

somewhat different approach.)
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1.) The database system must support a variety of design methodologies. The support of a top-

down approach is most easily achieved, but processes at a lower levcl may contribute information to

higher levels. Also, a designcr may necd to make changes at any lcvcl, which have to be reflected

throughout the design levels. An example of the first exception to a pure top-down method is the
handling of timing data than can be produced only after a detailed layout is available, while gates
have been dimensioned using simple assumptions of intergate transit times. A second case arises

when a particular gate of a series is changed to satisfy special interface demands or terminating

conditions.

2.) I:xplicit storage for all attributes of all elements at lower levels must be avoided in order to

permit effective management of change emanating at a higher level. Excessive replication of lower
level elements vitiates the benefits of hierarchical design methods, and creates excessive storage
demands. '[his implies that the database system must be able to fetch actually instantiated data or
con)u1te potential, non-instantiated data using stored algorithms.

3.) The database must be able to provide a convenient interface to a wide and changing variety of
programs. [his interface should not change as the database is developed and extended.

4.) The performance of the database system has to be such that the degradation of performance
relative to an isolated design file operation is proportional to the benefits gained.

IL. \lp roach

[he approach we are using in OUr work includes the use of commercial database systems to
;te ." the general suitability of database approaches to-VI.Sl design data. One objective is to
dcterlmine whether commercial database systems, used knowledgeably , can perform adequately, or
it they do not, where the bottlenecks arc. The current set of experiments uses a network system,

)1'( "s I)IMS-20. This is a system based on the published COI)ASYi database definition, which

hmsa ,trong orientation to well-understood business applications, such as inventory management.
'lhe dalabase designer can, through schema specification, select which of the logically appropriate
linkages should be implemented [WFM80J. As a successor experiment in this area we plan to
inVestigate use of a relational database system, RIMS, with strong automatic query optimiation

c;ip.hilitics [Sire80].

After having demonstrated replacement of a custom design by an equivalent database

rWpresenltaion, we explored implementation of novel data management facilities not provided by
speciali/cd design files. Specifically, as is necessary in order to operate in the mode for die VILSI
design enviromnent, the database system has to be augmented with communication paths between

Ice ls. These paths may ultimately be oriented in any combination of directions. We are
inc,;tig.ting the constituent directions, viz. down hierarchical level, up to higher level units, and

sidcways.

1
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In the downward direction, a method must exist to create the effect of lower level instantiation

using procedures and higher level descriptions. It is desirable that the query interfaces which access
the lower levels do not have to distinguish between actual or computed data elements. Along these

same lines, we intend to look at the issues and possibilities of when and how we wish to store
redundant or computed data.

Communication in the upward direction relates detail to more abstract specifications. 'lle

creation or modification of lower level instances has to be bound to the appropriate higher level

elements. An initial approach we consider promising and have implemented is signalling such
changes to the next levels up in the hierarchy. Multiple structures may become involved I)ecause an
element may be defined by an association of several higher level entities [Wic771: a simple example
is an element that is defined from the expansion of a functional component and a library
description. The signal creates an exception flag at tile higher structures. At a later time, when the
level to which the signal was directed is acc. -d by its owner, the system can provide a 'arning.
An appropriate action could then be taken; for example, verification of continued correctness of the
design at that level, or the introduction of a new version of :" component, or a new parameterization
of the library descriptions. With experience, selected types of changes could trigger automatic
updates.

While the need and techniques for up and down passing of information are relatively clear,
travel in the orthogonal direction is not nearly so, yet may be essential in the Future design system.
To explain the need consider the following scenario. Suppose we are designing a microcomputer

chip with an Al.U composed primarily of registers , dense RAM and ROM, a finite state PI.A
controller, some random logic, etc. l)esigning this chip with only one methodology would be a.

terrific waste of time and energy as, although there are design tools which can fairly efficiently
model, for example, random logic, it would v'ery inefficient to design a regular structure like a
PLA using random logic techniques. It would be far More efetctive to allow a sub-module to be
designed or simulated in its most appropriate manlier. Allowing for generalized sideways

communication could then greatly increase the overall flexibility and efficiency of a design system.

Current working design systems give no consideration to this sideways communication issue, but the
research has begun (see [Be801 for example) . We hope to learn from it and incorporate these new

ideas into our database system.

III. Current Work and Results

Before we to discuss what actual work we have done, it must be noted that due to availability

of data, programs, and otherwise existing material at hand, we are using data from conventional

circuit board design to model the VLSI design process. Iven so, man) of the problems are similar
and as such, we believe that the results are validly applicable to the VI.SI design process as well.
More importantly, by using this data, we were able to mike benchmark compairisons with existing
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specialized design files and programs on the same data. This is essential for measuring the relative

performance of commercial database systems. We feel that we have gained insight into the problems

involved in a database oriented design system, and in particular, have demonstrated the viability and

efficiency of using commercial database systems at least until the complete model of the design

process and its communication requirements is well understood. So, without further ado let us

describe exactly what we have done so far.

Reading from a Database

First, an evalution was made of )EC's l)lBMS-20 performance on data retrieval times.

Specialized design files of circuit information were used as the control to the experiment. The user
begins with his design written in SI)i. (Structural Design L.anguage JvC791 ), a straightforward

hierarchical description language. The SDI. de,;cription is input to the SI)I. compiler, which then

produces a dump file containing the logical description of each component decribed in the design.
'[his design methodogy is strictly hierarchical: the logical description of one component is described

in terms of smaller lower level components. [or example, gates arc described in terms of transistors,

flip-flops arc described in term of gates, registers arc described in terms of flip-flops, etc. Each

description level is given an unique name in the design file. Figure 1 shows the hierarchical

structure of the Pl)l-I 1 processor, as described in SDI. [SI.79]. The dump file from the compiler is
loaded into the SPRINT database [Ste79], the specialized control subject, via a 'hardwired' schema.

L.evel ('omponents

cpu PI)P- I 1
reg BLI.EG, PROCOUNT, BUSCOUNI', RAM16XI6, ALU, STATUS, AMUX

rfl PRIOARB. TIMER

rf2 TCFF2, RAMI6. 40181, 40182

ff TCFF, 1.116, I)1T4, IIUSI)I6, MUX16, RAM
gate 1)1'1", [f:F XOR, lluSI), MUX

trans TRANSP, INV, NANI), 3NANI), 4NANI), NOR, 3NOR, 4NOR

bottom TN, TP, PLA-SMAI.., PIA-MEI), PLA-LARGE

Figure 1

Initially the COI)ASYI. schema was modeled very closely to the SPRINT schema, and due to

SIRIN'I"s hierarchical structure, COI)ASYI. network capabilities were not utilized in the first
iteration. later the schema was modified to take advantage of network structures: this effort

provided linked access to the library file of componenis. A loader program was then written to load

the same dump file produced by the SI)I. compiler into the l)IIMS-20 database. Comparison of

loading times showed the SPRINT database to bc quicker, as expected, but I)BMS times were quite



acceptable. The initial loading of the PDP-11 example took SPRINT about one minute and
required about four minutes for I)BMS-20.

For the actual test of the retrieval times, a macroexpander program [Pay80] was used. This
program reads the logical description of a high level component from the database. 'The user then
specifies the levels to be expanded. Thus, if the user specified the program to expand all levels
down to the trar.;istor, then the resulting output will be the logical description of the original
component described totally in terms of transistors. This form of description may not be very useful
to the designer, but could be the input to, for example, a simulator program. Also, in the VLSI
environment, this could be the first step in producing the layout diagram.

The macroexpander program needs to do a tremendous amount of random read operations,
especially if the component that is being expanded is large and described at a high level. The
following are the results of expanding the AI.U and the PDII-11:

SPRINT DB S-20 records read words read

ALU 10 time 21 s 33 s 1514 7754

CPU time 30 45

POP-lI 10 time 66 115 5925 2850!

CPU time 120 190

'Iliese results show less than a factor of two degradation in performance of the I)BMS-20. This is an
acceptable trade-off for the increased flexibility and generality of COI)ASYI., and disputes the
original theories that there would be at least an order of magnitude difference in performance.

Writing into the Database
We next evaluated DBMS-20 performance in writing back into the database. In order to

simulate a real application of VLSI design, we considered how the database would handle
instantiations. Seeing how this might be done requires a closer look at the schema. Figure 2 shows
a subset of the network diagram of the schema. This is a version of the SPRINT schema, with a few
changes to more closely model VLSI design. For each component dscribed in the database there is
a ILogical I)escription record containing its name. This field is used as the key to find the record
directly via a hashing function. Records are connected to related records through three distinct
rings of pointers, forming a complex network. One of the rings off of the Logical I)escription
record describes each external pin, with a unique name and its function (i.e. input, output, tristate).
The equivalent-group ring describes the equivalence bhtween pins and sets of pins. The remaining
ring off of the logical description record supplies the internal description of the part. For each
Internal )escription record, a General Information record is kept describing general characteristics.
The attribute fields, creator, a time stamp, level, purpose, and version number are meant to fully



Logical Description

Equivalent-groups

! __ Iname
Logical Pin type

name

type

Equivalent-Elements

element
Internal Description type

General Information Net Component
creator name name
time - I logical type

level external

purposeverson -
vcomponent

pin net

E pin

Figure 2
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describe the corresponding internal description.

In order to exercise the representation, the macroexpandcr program was modified so that it
could write back into the database. When working in this mode, after the program expands a

component, it stores the new representation as another internal description along with a general
information record with the appropriate data. In the design atmosphere, suppose one is working on

a component at another level or perhaps at the same levol. The user makes some changes from the
original description and stores his version into the database. This may be done to several or all the
components. Now when a higher level componcnt is expanded, the program can selectively choose

the appropriate internal description to use. The above scenario was tested on the AlU with

following results:

upper level desription of the A[U contains the following pieces and levels:
40181 rf2
40181 rf2

MUX gate
XOR gate
INV trans
NAND trans
4NANI) trans

NOR trans
4NOR trans

The following is some of the data on expanding the pieces of the ALU:

40181: Total read time = 17.4 seconds.
record name quantity

net 152
component 127

comp-pin 564
Total read 843 (4432 words)

Total write time = 41.3 seconds.

record name quantity
net 154

net-pin 898

component 293

comp-pin 898
Total written 2243 (10136 words)



40182: Total read time = 8.78 seconds

record name quantity

Pet 79

component 67

comp-pin 268
Total read 414 (2240 words)

Total write time = 8.82 seconds

record name quantity

net 38

net-pin 186

component 59

comp-pin 186

Total written 469 (2128 words)

'lhe nioix anO the XOR pieces were also expanded. Then the A[U was expanded again with the

expanded 'ersion of the lower level pieces in the database.

lotal read time = 48.0 seconds.
record name quantity

net 341

component 441

comp-pin 1575
lotal read 2357 (12745 words)

Total write time = 203 seconds.

record name quantity

net 721
net-pin 4384

component 1441

comp-pin 4384

Total written 10930 (49364 words)

[he eni ient state of the SPRINT design system does not allow writing instantiations back into the

d~la~ii,,c, so no parallel experiments were done, but again the )IBMS-20 implementation showed an

,iccepi~ihk lerforniance.

Signalling Changes in the Database
The next and most recent test on I)C )I)MS-20 was to flag the neccessary upper level pieces

regarding changes made to lower level components. A straightforward approach to this problem

I .
. . .. ,. ... - .'T- - - - ... -ii lrI"-::' ="-
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would be to have each component keep track of the upper level parts that use that component. To

implement this in CODASYL, we would like to have each Logical Description record own other

Logical Description records in a owners set, as such:

Logical Description owners
name linkset
changed

Besides causing cyclic errors, this structure is not allowed in the COl)ASYi. definition. The

technique used was to add another record off the logical description to indirectly find the owners,

illustrated below.

ILogical Description

name
changed

pieces owners
linkset linkset

PointerBox

marked

The following example illustrates how upper level pieces are warned of lower level changes.

Suppose the multiplexer (MUX) has been changed and we wish to flag all the components that use

the multiplexer. In the database there are several parts that use the multiplexer, and for each one of

these there is a PointerBox record in the multiplexer's ow¥ners linkset. Some of these include the

ALU, status register, and a 16-input multiplexer (MUX16), see figure 1. These same PointerBox

records are in the pieces linkset of the parts that use the multiplexer. The multiplexer itself is made

up of inverters and transistor pairs (TRANSP). Thus there are two PointerBox records in the pieces

linkset of the multiplexer. The flagging process begins by marking the first record of the owners
linkset, in this case say it is the ALU. Here the field marked of the PointerBox is incremented.

Next. the owner record of the pieces linksct of the current PointcrBox is found. lach Pointerliox

record has a pointer directly to the owner record of both the pieces linkset and the owners linkset.

At this time, the logical description record of the Al U is located and the field change is

incremented. Flagging continues from the Al.U in a recursive manner. When a logical description
record with a empty owners linkset is found, the upper most level has been reached. The flagging

must then move back to the previous level by finding the next PointcerBox record of the owners

linkset.

Ib
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"is method of flagging upper level components is best characterized as "height-first". Ibis
method requires more record accesses, since many of the same records are retrieved many times,
than a possible level or breath-first flagging, but the height-first method allows more information to

be stored.

Consider the following example: Suppose the multiplexer and the inverter are changed and
their tipper level pieces are notified. As shown in figt.e 1, the multiplexer and the inverter are
described on different levels of the hierarchy, and a change to the inverter will also affect the
multiplexer. If you now query the PDP-11 data record as to whether any changes have been
flagged, only the inverter will show up as an altered component. If the upper level pieces of the
inverter are unflagged (decrement the change and marked fields), and the PDP-11 data record is
queried again, the multiplexer will be identified as the modified component since correcting for the
inverter does not resolve the othere multiplexer modification. Now, suppose the multiplexer and
the NAND gate, which is described on the same level as the inverter, are changed. A subsequent
query from the PDP-l record will reveal that both the NANI) gate and the multiplexer h.we been
changed. The multiplexer is caught in this situation because none of its lower level pieces were
changed. Thus this flagging algorithm allows easy detection of all the lowest level independent
modifications. Also, every component can be unflagged uniquely by reversing the flagging
procedure. The time to carry out this flagging algorithm depends on the level at which the process
is started. Here are some sample flagging times:

Piece Level Time (seconds)
ALU reg .13
MUX, XOR gate .9
INV trans 7.1
TN bottom 21.

IV. Conclusion

With the successful implementation of flagging, we have taken time out to write this paper and
so we shall summarize our findings and predict our next moves. Looking back over our work, we
believe our initially stated approach to be most promising: the commercial database system allowed
us to implement both initial designs and modifications relatively quickly and easily. Coupled with
the discovery that performance is not badly affected, this has allowed us to experiment productively.
This ability to experiment is important to obtain the knowledge needed for designing useful
database systems for VLSI design. As we, and designer. 'hemselves, gain more insight into the
design process, we hope to develop a database supporting < the types of communication paths for

iI
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many different kinds of interlocking design tasks. The final long rangc goal is, of coursc, a usable,

flexible, expandable, and efficient database oriented VLSI design system.

Further experiments arc in progress to completc the tasks outlincd in Section II. The

immediate task is to manage queries that access girtially instantiated and partially computablc

elements. Work by others is in progress on the relational database approach and a comparison will

provide further insights and directions for future work.|I

I'P . 1
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